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SUMMARY

The objective of this program is to investigate surface-patch

modeling and to develop a user-oriented computer algorithm for analyzing

general three-dimensional radiation and scattering problems with arbitrary

surface geometries for airborne/ground-based applications. The existing

surface-patch algorithm was improved and tested on prolate spheroids,

circular and rectangular cylinders, and boxes. Good numerical results

were obtained even for geometries with sharp edges. The merits of the

surface-patch approach in solving electromagnetic problems of arbitrary

geometries have been demonstrated for conducting bodies whose dimensions

are not electrically large. Its advantages as well as disadvantages in

comparison with the wire-grid approach were also discussed. Development

of a new surface-patch algorithm was started with a reaction integral

equation. This approach required intolerably large computer time in

the integration process involved in the matrix computation. The

electric field integral equation was then used to overcome this problem.
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SECTION I

INTRODUCTIUN

There are presently two types of approaches that have been employed

to treat the scattering and radiation of arbitrarily-shaped conducting

bodies that are not electrically large. The first is to simulate the

conducting surface with thin wire grids and the second is to approximate the

surface with patches. Research in the wire-grid approach has been very

active, yet comparatively little effort has been devoted to the surface

patch approach. Surface-patch modeling of arbitrarily-shapee dies has been

investigated by Oshiro, et al. [1,21, Albertsen, et al [3' 1 Wang

[4].

The objectives of this research program are to investigate surface-

patch modeling and to develop user-oriented computer programs for

analyzing general three-dimensional radiation and scattering problems

with arbitrary surface geometries for airborne and ground-based

applications. The tasks include the evaluation and improvement of the

existing Georgia Tech algorithm and the development of computer programs

for thin-shell and antenna problems. This interim report summarizes the

accomplishments during the first year of this two-year research program.

The algorithm improvement was primarily directed towerd the

reduction of execution time and the amount of central memory required in

the numerical computation. Numerical testing was carried out for

prolate spheroids, circular cylinders and rectangular cylinders (boxes)

in order to determine the accuracy of the algorithm. Also, a computer

program employing the electric field integral equation was developed to

treat thin-shell problems which can not be computed using the existing

Georgia Tech algorithm.
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SECTION II

EVALUArION AND IMPROVEMENT OF EXISTING ALGORITHM

A. Basic Formulation

The existing computer program at Georgia Tech, as discussed in

Reference 4, employs a magnetic field integral equation (MFIE) as

follows

Jrn (J) =') x V'4 (r,r')ds's )  271 Jf--
S2n X HlnC (r) for reS (i)

where J - surface current density on the surface S,

n - an outward unit vector normal to S,

40 [ expC-JkjrK - _'J1)1/ _K- f rI ,
r', ' vectors from the origin to the field and source points,

H inc incident magnctic field intensity,

f principal value integral, and

V1 =gradient operator with respect to the primed coordinates.

For the convenience of the present discussion, it is desirable to

review the matrix generation process involved. We define the operator L

as

L(J (r)) = J (r) ^1 X f J(r')X V'ds'. (2)

-S- -s 2 fs -s

We now let

N

J Cr) = J Cr), (3)
n=2



and

Jn() In1 P n (r) +I 2 Pn2 ()(4)

P (r) -U ~ for reAS (5)
Mn -n - n

9 0 elsewhere,

where U n and U n2are orthonormal unit vectors on ASn defined by

inc

U = ~l~X~~incCL)!(6)

-n x. (7)

Using these relations, Equation (1) can be written in the form

[ P C r)] = P C r) X -n U x tV~ds',(8
n- - 21T -n f

LSn

and we define the weighting function as

W i(r) = 6(r - r )P C r), (9)

- -i-i M

and the scalar product as

<P,Q) = fsP ds. (10)

Thus, by applying the weighting function to Equation (8), we have

3



Si (r), [_ ,L*> "6. - -U . n
- n m j 2 -- m m

x [U nJX f V'O(rr)d'

As
n

The magnetic field integral Equation (1) can be used to generate a

system of linear equations by expanding the unknown surface current J

according to Equation (3) and performing the scalar product according to

Equation (11). The resulting system of linear equations can then be

denoted by

2 N IJZ i = V i (12)
2 - n m n m

J=l n=l

m =
i = 1,2

where

Z m n <Wi(r) , L [PJ (r)

iinc
S=<W (r), 2n X Hi(r)>

To solve for the unknown surface current I , one must first
ncompute the matrix element Z which involves an integration process

mnaccording to Equation (11). The existing Georgia Tech computer

algorithm is based upon the formulation which is summarized in the

preceding equations. The methods of evaluation of the matrix elements

and matrix solution, together with the techniques which have been

developed to improve the computer algoirthm will be discussed in the

following paragraphs.

B. Matrix Symmetry

Execution time and central memory size are primary considerations

in the present analysis. It is desirable to explore the possibility of

4



attaining a symmetrical property for the square matrix Zi  . A

symmetrical matrix requires only about half the execution time and

central memory as does an unsymmetrical matrix. Thus, symmetry will

make it possible to compute the EM field for scattering and radiating

bodies of larger size.

The square matrix Z can be arranged in the following form
mn

in Z m 1 z 2 (3

mn I mn

which consists of four sub-matrices each of which has a NxN dimension.

Letting

- M + (i-1)N, (14)

R - n + (J-l)N, (15)

we have

K ij
c Z m n (16)

For [Z i to be symmetrical, it is necessary, by definition,
mn

that

C C
Ca C ' (17)

or

Z ij CK =C1 (18)
m n I KZ - C

=Zii.

n m



Substitution of Equation (11) into Equation (18) yields

" n X U V '* (r ,r')ds')}

ASn

Snnl xU V (r nr')ds') (19)

n ASm

which is the condition for a symmetrical matrix [ZIi] . In general,
mn

Equation (19) can not be satisfied and therefore symmetry for the matrix

can not be readily achieved.

Oslerkin's method, which chooses identical sets of basis and weighting

functions, is more likely to yield symmetrical matrices. In the present

case, this can be explored by selecting equal patch sizes and weighting

functions as follows

W i(r) = p (r). (20)

The condition for matrix symmetry in this case is

SIn n {U x V'O(r,r')ds'dslm J Sm JSn

(21)

J_ " n x {UIn x / fASM '(,')ds'ds),

which can be reduced to

i xU • n xlU =U •n (22)
m I -n n m (22)

6



or

ui . ul+6 1 (_1) i =U. u 1+ (-l)i (23)
-n --m -r nn

Unfortunately, Equation (23) can not be satisfied on a general three-

dimensional surface. If we let

12 = 0 for n = 1, N (24)
n

in Equation (4), Equation (23) is reduced to

U1 . U2 = U1 . U2  (25)
-n --m -i n

This is similar to wire-grid modeling, in which the direction of the

current is along the pre-determined wire structure. The condition

stated by Equation (25) is still too restrictive to be satisfied on a

general closed surface.

The above discussion can also be reviewed on the basis of linear

algebra, which attributes the symmetry of the matrix to the self-

conjugate property of the linear operator L [5]. As long as one selects

an orthonormal basis for a space, then self-conjugate operators are in a

natural one-to-one correspondence with symmetrical matrices. The

difficulty in attaining matrix symmetry therefore appears to be due to

the magnetic field integral equation for which the operator L is not

self-conjugate. It is therefore necessary to modify the operator L , or

the magnetic field integral equations, before a further step to attain

matrix symmetry is attempted.

In the wire scattering and radiation analysis, apparently the only

algorithm having a symmetrical matrix is the reaction integral equation

developed by Richmond [6]. The original operator was not self-conjugate

and the matrix therefore asymmetric. However, by approximating the

7



surface integral over the tubular expansion dipole with a line integral,

the matrix element, or the mutual impedance between two dipoles, was

made symmetrical. Other computer programs do not have a symmetrical

matrix in their computation. However, matrix reduction for

geometrically symmetrical scatterers and radiators has been recognized

and practiced such as in theWAMP program [7], the work by Sancer, et al.

[8], and Tsai, et al. [9]. In the present algorithm, matrix reduction

for a symmetrical scatterer was implemented and will be discussed next

in this section.

C. Symmetrical Scatterers

When the direction of propagation of an incident plane wave is in

the plane of symmetry of a conducting scatterer, it is recognized that

some symmetric behavior must exist in the induced current on the surface

of the scatterer. This property has been taken advantage of by various

authors in their effort to reduce the central memory size required in

the computer run [7-91.

Without loss of generality, Cartesian coordinates can be set up so

that the plane of symmetry coincides with the XZ plane as shown in

Figure 1. The polarization of the incident wqve is assumed to be either

parallel or perpendicular to the XZ plane. Arbitrary polarizations can

be decomposed into two components, one parallel and the other

perpendicular to the XZ plane. The overall scattering problem can then

be treated by superposing the fields due to these two component incident

fields.

At two symmetrical points I and I+N/2 in Figure 1, the components

of the induced surface currents exhibit the following relationships

ix lx
I l+N/2

31y = ly
I I+N/2

lz lz

I I+N/2 ' (26)

2x 2x
I I+N/2

2y 2y
I I+N/2

2z 2z
I I+N/2

8
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when Hi is perpendicular to the plane of symmetry (XZ plane). In

Equation (26), J denotes, for example, the x component of II P in
Equation (4).

When H1 is parallel to the plane of symmetry, the induced current

on the scatterer has the following property

lx lx
I I+N/2 '

Jly = JIy
I I+N/2

lz lz
I I+N/2 ' (27)

2x 2x
I I+N/2

J 2y= _j
2 y

I I+N/2

2z 2z
I I+N/2

Equations (26) and (27) show that the number of unknowns in

Equation (12) can be reduced from a total of 2N to N. This can be

carried out by the following reduction process

N 2 N/2 2 N 2IiE J = - ) Jz l j + z J l
n mn n mn n mn

nl j-1 n=1 j=l n=N/2 + 1 j=l

(28)
N/2 2 [ +

= F lj [Z i+ -m(n+N/2)
n=l j=l

where Z <._ (r), L[C "P (r)]>, (29)
m(n+N/.') -m I -n-

where Ci s a dyad defined as
=1 p

10



=p " _)(-l){(l)P+J+l ; + (_l))IP+J+2 + (-I)Ip+J+3 i=1 p
(30)

Ip = I if H i x-z plane

= 2 if Hi I x-z plane

Equation (12) can now be written as

N/2 2 z' -,- Z + ojv (31)
n=l J- n m(n+N/2) m i - 1,2

m = 1 .... N/2

The total number of equations is then reduced to one half of the

original number and the matrix size to one fourth of the original size.

D. Matrix Computation

iiThe matrix element Z , according to Equations (11) and (12),mn
involves an integral of the following form

Im =f S V'¢ (r , r') ds' (32)
n

Computation of the integral Im is very time consuming if carried out

numerically. However, it has been observed that

I m  ' (r , r )  AS n  (33)

where r is the position vector to the center of the nth patch and ASn

is its area. The approximation in Equation (33) improves as the shape

of the nth patch approaches an equiangular triangle.

I'



Figure 2 shows, without loss of generality, the nth triangular

patch coincidng with the X'-Y' plane, one vertex on Y' axis, and the

opposite side on X' axis. The integrand can be simplified by the

following approximation

-j kR
(r m, r') "' e mn [1-Jk (R-R mn)]/R, (34)

which is a two-term Taylor expansion of e- jkr in the neighborhood of
Rn, where R -r' I, Rmn Ir -r I as in Figure 3. The validity

of Equation (34) depends on the following condition

k R-Rmn << 1i (35)

Since the patch size is limited to, say, V/3 or less on each side of the

triangle, it is generally true that

k IR-RmnI < 1 . (36)

It can be shown that the self patch integral I vanishes when the--n
patch is equilateral and small enough to satisfy Equation (35).

Therefore

I =0 (37)

In proving Equation (37), it was noted that Equation (35) was well

satisfied in the immediate vicinity of Rmn where IR - Rnm I - I RI - 0.

When mnAn, two separate patches are involved, the integral Im
-n

becomes considerably more complicated but can be approximated in closed

form as follows

-JkR mmn ly
1 mn (1 + JkR ) e (x'I + y ,n x y

12



where

[ 2  2 2 1 x 2
1*x (x) n (x 2 + 2 z + (x-x;)-2Y,) Y

1X 
Y'

2x'

+ ix' 2+ \ 2 1/2 2 ,x -2y

+ ~ 1) ) j2] 1/2 + 4(1l + (2I+ -1-(xx

2x' 1()
2 (x-x) 2 y

1n [(x-Lxp2 + y z 2 + 4 +(x)

1 x (39)
+(~2 j2

2 1 j

- 1,2 2 2 2x'

- In I(x+xf) + y + z + 1 ( j-yy

2x2

13



1 x + x') -Y

1 in (x +x1 2 2 1/2

=n xL[y-y1)2 + x2 + z 21/ + x TY-j-

1 2(y)

1 lin {[(-yj) 2 + x2+ z 2 +(x (y-y') +2x) x

(40)

+ ()2 + 1) x1211/2 l [12

-yi

+ (Y-y') -x 1i{[ 2 ~2 2 12i/2-x

1i +[ (4)2 X

14



+ in{[x 2 y2 + z 2 + 2xx~ + x 2 1/'2 _x~ -x}

+ 2in {[(yI)2) 2 + z~ (+ (y-yj) -2x x2
1 +(YI)

C2

+ (I +(1) 2 1/2 + x[I +(Y.i) 2]1/2 + 7; (Yi-4) -x

1 (Y1i)

1 ,2 2~~2 1/2 ( (-y!) -x
-I [1(y-y) 2 + x 2] / + 2

1 
1 +(Yi)2

-in {[x 2 + 2 + z 2  2xx' + x '21/ X I
2 22

+In {[x2 + y2 +zJ2 -x}
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Figure 2. A triangular patch and the coordinates.
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n

Figure 3. Geometry of the mth and the nth patches.

17



where x,y,z denote xm , Ym, zm, respectively.

Although Equation (38) is an accurate expression for the
n

computation of I n, it is quite cumbersome. In practice, the simple

expression of Equation (33) is quite satisfactory. In fact, all the

numerical data included in this report are based on Equation (33). The

CPU time required in generating the matrix elements is small, being on

the order of 100 seconds for a 192x193 matrix on the CDC CYBER 74

computer at Georgia Tech.

E. Interior Resonance

Interior resonance in electromagnetic scattering has been observed

in two types of problems, one due to the simulation by wire-grids

[10,11), the other being related to the integral equation used. In both

cases, the solution to an integral equation is not unique at the

resonance frequency of the interior cavity. Thus, a solution to the

interior problem emerges while the exterior problem is being solved.

The latter type of resonance was discussed in detail by Poggio, et

al. [121. A similar phenomenon in acoustics was analyzed by Copley [13]

and Schenck [141. Copley showed that the integral representation of the

velocity potential contained the product of l/(k-k ) and a surface
m

integral, where k is the free space wavenumber and k an eigen-value of
m

the interior problem. As (k-km ) approaches zero, the surface integral

must also vanish so that their product will yield a finite value for the

velocity potential. Consequently, it becomes increasingly difficult to

calculate accurately the ratio of two vanishing quantities as k

approaches k . Since the accuracy of the computer is limited, numericalm

inaccuracy will arise at the resonant frequency.

In electromagnetics, a similar mechanism was noted in various

integral equation formulations [12,15,16,17]. Harrington [16,171 stated

that both electric-field and magnetic-field integral equations failed at

frequencies corresponding to the resonant frequencies of the interior

problem. The present algorithms employ the magnetic field integral

equation and are therefore expected to exhibit difficulties at the

interior resonance frequencies. In fact, a careful search near the

18



first eigen frequency of a sphere of radius "a" located at ka=2.744

revealed an erratic behavior in the calculated backscatter cross-section

around the value of ka-2.89, as shown in Figure 4.

The distinctive feature of the internal resonance in Figure 4 is

the rapidity and sharpness of the variation of the radar cross-section

versus frequency. Because of the slight frequency shift and the

narrowness of the resonance bandwidth, this resonance escaped an earlier

inquiry into this phenomenon. Although the resonance has shifted, the

radar cross-section curve off resonance does not show any significant

shift one way or the other. Therefore, this shift of resonance can not

be explained as being due to the effective size of the sphere

simulation. It is probably due to the surface-patch algorithm, which

may be less sensitive to resonance phenomena than other algorithms.

It is now clear that internal resonance presents a numerical

problem in the present algorithm over a narrow bandwidth near the

resonance frequency. Correction of this deficiency can be carried out

by following either of the two approaches outlined by Mautz and

Harrington [16,171. These methods involve the use of a modified

Integral equation, the combined field or the combined source, for which

the solution is unique.

F. The Basis and Weighting Functions

The basis function used in the present approach was defined in

Equations (3) through (7). It is natural to ask whether other basis

functions can be used to any advantage. For example, it is sometimes

possible to orient all the basis vectors perpendicular to a fixed

coordinate axis instead of the incident wave polarization. This was

tried for the case of spheres with a surprising result. The output data

are nearly identical whether the basis vectors are oriented according to

the Incidence polarization or a fixed coordinate. No other geometry was

tested because of the difficulty in defining a basis vector

perpendicular to both the surface normal vector and the fixed

coordinate. We have not been able to obtain a satisfactory explanation

for this discovery during our brief examination of this problem.

19
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Basis functions other than the subsectional pulse function have

been considered in the present study. These alternate basis functions

included the triangular and sinusoidal pyramid functions. The

possibility of extending these subsectional bases over more than one

patch was also considered. Since the current is continuous for a

conducting body having a closed surface, the triangular and sinusoidal

pyramid bases must be extended to cover more than one patch in order to

achieve continuity for the current.

Figure 5 shows a triangular pyramid basis function peaked at the

center of the bisectors of the center patch. Assuming that all the

patches are organized to share one side with each of the three adjacent

triangles, we can establish a basis function which is centered in each

patch and declines to zero at the centers of the adjacent patches. Note

that the shaded and unshaded triangular pyramids in Figure 5 only

represent the magnitude of the current, not its polarization.

One problem with the shaded basis function from the shaded to the

unshaded pyramid in Figure 5 is that the current is zero on the vertices

of the triangular patch. It is therefore desirable to modify the basis

function by extending it from 2, 3, 4, to 2', 3', and 4', respectively.

The decay of the basis function from 1 to 2, 3, and 4, (or 2', 3', and

4') can be changed from linear to sinusoidal if it offers any

computational advantages.

The weighting function used in the present approach is the Dirac-

delta function according to Equation (9). If a flat pulse function is

used, the matrix element is then given by

i 1 j
zJ ASm5' 6j _ T uJ 'n x U  x m[ f S V'O(r,f')ds']dsJ
mn m M R m n )AS n(4
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Figure 5. Two triangular pyramid basis functions centered

at point 1 of the center patch.
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Equation (41) now involves a double integration. The integration with

respect to s' can be approximately expressed in closed form according to

Equations (38) - (40). The next step, integration with respect to s,

appears difficult and must be computed numerically.

The Dirac-delta function can be used as a weighting function for

the triangular pyramid basis function. In fact, six out of the seven

major wire analysis programs use Dirac-delta functions as the weighting

function and this method is referred to as collocation 118]. In this

manner, the complexity of the triangular pyramid basis function can be

drastically reduced.
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SECTION III

NUMERICAL TESTING

Based on the study described in the preceeding section, two

computer programs, SCT51 and SCT52, were developed for numerical

testing. These two computer programs have been described in a separate

document [19] and thus their descriptions will not be repeated herein.

The program SCT51 applies to arbitrarily-shaped scatterers without

matrix integration and the program SCT52 applies to symmetrical

scatterers with the incident wave propagating along the plane of

symmetry.

Numerical computations have been performed previously for

conducting spheres of various sizes [4]. Thus, it is of interest to

consider other geometries and the scatterers studied in this report

include prolate spheroids and finite length circular cylinders and

rectangular cylinders. The results of the computations were then

compared with existing data in the literature. While excellent

agreement between the data and the computations has been observed, there

was an apparent discrepancy with respect to polarization in some of the

cases which were considered, Namely, our TE (Transverse Electric)

calculation may agree with known data of TM (Transverse Magnetic) case,

and our TM case may agree with the known TE data in the literature. In

fact, our results agree with some sources and disagree with some other

sources as far as the incidence polarization is concerned. We have

examined the set-up of the incidence wave in our computer program and

have not found any error. At this point, we tentatively assume that the

discrepancy is due to confusion in data presentation with respect to

denoting the polarization. A further examination of the literature may

resolve this apparent notation problem.

The incidence polarization problem emerged only when it affected

the results. In many instances, the geometries are symmetrical and the

scattering characteristics are identical in the two principal planes.

There is also a possibility of error in the definitions of the axes to

which the TE and TM modes are referred. The axis was defined in all the
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data presented in the literature but this definition could be a

potential source of error.

In order to resolve the polarization problem, a series of

measurements is planned in early 1980 when the compact range at Georgia

Tech will be available for scattering measurements.

With the foregoing discussion in mind, we proceed to present the

numerical results, which when we ignore the discrepancies in

polarization in some cases, are in good agreement with existing data in

the literature.

The computation for prolate spheroids employed a 54-point, 96-patch

spheroidal structure described in Reference 4, which is easily elongated

in one dimension to generate the desired prolate spheroid. Figures 6

through 8 show the comparison of the back-scattering cross-section

resulting from the present calculation and the data from Moffatt, et al.

(20,211. The minor axis a of the patched prolate spheroid is determined

by its "effective" value, which is calculated by dividing the

circumference by 2T.

The backscatter from a finite length circular cylinder was

calculated using the program SCT52 and the results are compared with

data in the literature [22] for E-plane and H-plane incidence. Again

the question of effective diameter of the cylinder arises. Figure 9

shows how the finite circular cylinder was simulated with triangular

patches. Figure 10 shows how the patched cylinder is related to the

circular cylinder. Obviously, a cross-section inscribed on circle is a

less reasonable choice than the cross-section area corrected to a

circle. Indeed, better results were obtained by the method of cross-

section area corrected to a circle as shown in Fgures 11 and 12.

Figures 13 and 14 show the comparison of the computed results for a

finite rectangular cylinder with the calculation by Tsai, et al (23,241,

who referred to the rectangular cylinders as boxes. SCT52, which takes

advantage of the symmetry of the problem, was employed in this

calculation. Tsai's calculation also utilized the symmetry of the

scatterer. Note that a 60 x 60 matrix was used in the present

calculation while a 100 x 100 matrix was used by Tsai.
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Several salient features were observed in the numerical testing of

the Georgia Tech computer program. The computer program is capable of

generating accurate scattering data as long as the patch sizes are such

that the centers of the adjacent triangular patches are spaced a quarter

wavelength or less. Geometries involving sharp angles such as the boxes

and finite circular cylinders can be handled without degradation in

accuracy. The computational speed and central memory requirement are

dependent on the number of patches used in the simulation. For a 96-

patch spheroid, which nearly occupies the full central memory of the CDC

Gyber 74 computer at Georgia Tech, one run using SCT51 at a single

frequency and one incidence angle takes about 150 CPU seconds. When

SCT52 is used for a symmetrical geometry, both the central memory and

CPU tine is reduced by three-fourths.

It is also of interest to compare the numerical advantages of the

surface-patch modeling and the wire-grid modeling approaches. Although

a number of wire-grid algorithms have heen developed [18], there appears

to be no calculations with wire algorithms for the geometries presented in

this report. A wire-grid model for a sphere, originally calculated by

J.H. Richmond, was reported in Reference 12. This wire-grid model

employed an earlier algorithm by Richmond, yielding only fair results.

A more critical comparisin was performed at Georgia Tech [4] with

Richmond's latest refined wire algorithm [6]. It was shown in this

comparison that the present surface-patch approach was able to produce

data of better accuracy while using fewer linear equations and less

execution time. The wire approach employed 194 equations, and required

a 27-second compilation time and a 237-second execution time. The

surface-patch approach employed 192 equations, and required a 8-second

compilation time and a 150-second execution time. However, Richmond's

reaction integral equation approach has one major advantage. Its matrix

is symmetrical and as a result its central memory requirement is only

about 60 percent of that for the surface-patch algorithm. This

advantage of the reaction integral equation algorithm is apparently not

shared by other wire algorithms and was not mentioned in the detailed

comparison study of various wire-grid approaches [18].
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SCT52, the surface-patch algorithm for symmetrical scatterers,

reduces the execution time and central memory requirements by 75

percent. When there is two-plane symmetry, this reduction is 94 percent.

Thus, for the sphere, in which two-plane symmetry exists, the exectulon

time is 9 seconds and the central memory size will be one sixteenth of

that required by SCTS1 or one-eighth of that required by Richmond's wire

algorithm.

No comparison has been made between wire algorithms and the surface-

patch algorithms for geometries other than the sphere. The accuracy and

convergence of the surface-patch algorithm discussed herein surpass

those of the wire algorithms so that a detailed comparison with wire

algorithms is not of high priority in the research program. The effort

in generating correct data for various geometries using the wire

approach is estimated at one to two person-months. There will also be

the question of what size of diameter to choose for the wires and how

these wires should be organized in the simulation. The fact that the

scattering characteristics depend on the wire radius to be chosen has

already seriously hindered the wire-grid approach for surface modeling.

Now that the surface-patch approach has demonstrated its accuracy for

several important types of scatterers, including some with sharp edges,

the advantages of the surface-patch approach over the wire-gird

approaches are evident.
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SECTION IV

DEVELOPMENT OF A COMPUTER PROGRAM FOR THIN-SHELL PROBLEMS

It is well known that the magnetic field integral equation

encounters numerical instability problems when used for thin-shell

scatterers [25]. This difficulty can be overcome by using the reaction

integral equation [26] and electric field integral equation [27] or

others [25,28,29]. However, computations in the literature invariably

are limited to the simple case of a rectangular conducting plate and a

dihedral corner reflector. There is no indication that any of these

methods can be readily applied to other geometries.

In the process of developing a computer program for the scattering

of arbitrarily-shaped thin shell structures, two approaches were taken

in this study. A reaction integral equation approach was initially

investigated but was not completed because of large CPU time

requirements in the numerical computation of matrix elements. An

electric field integral equation approach was then adopted and a

computer program coded and debugged. Both of these approaches are

discussed in the following paragraphs.

A. Reaction Integral Equation Approach

The reaction integral equation has been applied to the cases of a

rectangular plate and a dihedral corner reflector [26]. The possibility

of using this approach for arbitrarily-shaped scatterers is examined

herein. The major difficulty in this approach iies in the difficulties

in the integration to obtain the matrix elements given by

z = - ]_ f 5  Ji. Ej ds'ds (42)
mn fAS AS --m -n

m n

where J i= basis function of i polarization in the m patch,

E - electric field due to the basis function of ith polarization
.1 th

in the n patch,

th nth
ASMASn = surfaces of the m and n triangular patches.
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Strictly speaking, Equation (42) involves triple integrations as

E n must also be evaluated by an integration process. Presently, there

appears to be no closed-form expression for the field due to a

triangular current patch. Even in the case of a finite line source, the

sinusoidally excited dipole is probably the only one with a simple

closed-form expression for the near-zone field [6]. In order to compute

E n in Equation (42), two integration methods were tried. The first

method employs modern numerical integration techniques, and the second

method is based on the approximation of the surface current with several

line current elements.

In the numerical integration technique, the definite integral is

expanded into a finite series which can be computed numerically [30].

Specifically, the integration of a function over a triangular area can

be carried out with a 64-point formula (301. 64 points in the triangle

are pre-selected according to a simple arithmatic formula and the values

of the integrand at these points are then computed. The value of the

integral is then obtained by summing up the product of these 64 sampled

integrands and a predetermined weighting function of simple arithmatic

form.

The accuracy of the numerical integration depends on how rapidly

and how frequently the value of the integrand varies in the area of

integration. The 64-point algorithm was checked with several known

functions and the accuracy of this algorithm was quite impressive. For

example, Table I shows the comparison between the exact values and the

results of numerical integration for the integral

Jl fl-x sinwxdydx. (43)

As can be seen, even when w-10, the 64-point algorithm is highly

accurate.

Although this integration algorithm is highly accurate, it is

inefficient. The total subroutine contains only 17 lines of short and

simple arithmetic expressions, as well asan 8x8 "DO" loop. It takes

about 0.08 CPU second to run one case in Table I. Consequently,
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TABLI I

ACCURACY OF THlE 64-POINT NUMERICAL INTEGRATION ALGORITHM

Integral tested x sin1-xydxJo J0  si x y x

w Exact Numerical Iitegration

0 0 0

1 0.1585290152 0.15852.90

10 0.1054402111 0.1054402

100 0.0100506366 0.05372281

1000 0.0009991731 -0.008012371
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Figure 15. An arbitrary triangular current patch being

approximated with orthogonal current filaments.
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considerable restraint must be exercised in applying this technique to

the evaluation of matrix elements in Equation (42). Since we were

unable to obtain a closed form expression for E in Equation (42)--n

analytically, we chose to approximate the patch current with current

filaments as shown in Figure 15. Obviously, the higher the number of

filaments included in the process, the more accurate will be the

approximation.

The expressions for the electric field radiated from a line current

having a sinusoidal distribution were well documented by Schelkunoff and

Friis [31]. Because of the symmetry of a straight line current, the

radiated field is constant around the axis of the line current. The

radiated field therefore consists of two components, one parallel to the

current and one perpendicular to the current. There is no 0 component if

a cylindrical coordinate is assigned with the current along the z-axis.

A check of the formulas for E and E showed that E was an exact

expression. However, the expression for E was not exact as implied.
z

In Equations (12) through (40) of Reference 31, the term

1 31 aT] M a dz' (44)
j E az' az'

was omitted in the derivation. The exact expression should read

22

dE ,+a82 I(z')dz (45)dz =W 3z 3z'

zz

It was noted that Equation (45) without the term of Equation (44)

is Pocklington's integral equation [32]. On the other hand, Equation

(45) was employed by Kyle [33], Richmond [34], Harrington [35], and

Thiele [361 in their thin-wire computations. In the present study,

Pocklington's integral was chosen so that all the formulations for a

line current source were based on Reference 31.

Figure 16 shows a comparison between the present calculation and

the calculated data in Reference 26 for the mutual impedance between two

rectangular dipoles. The present calculation employed three filament

approximations for triangular surface patches. Each rectangular patch
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Figure 16. Comparison of computed mutual impedances between
two rectangular dipoles.
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was divided diagonally into two triangular patches. The agreement with

data of Wang, Richmond, and Gilbreath [26] was good as long as the

dipoles are spaced one quarter wavelength away. For closely spaced

dipoles, more current filaments are needed in the approximation.

This combined analytical-numerical method made it possible to

reduce drastically the computational time required for the matrix

element to about 1/20 of the time needed for the previous numerical

integration. However, the requirement for computational time was still

prohibitively high. There appears to be no readily available technique

to reduce the CPU time to an acceptable level. The course of research

was then turned to the electric field integral equation approach.

B. Electric Field Integral Equation Approach

The electric field integral equation usually takes the following

form [12]

n x Enckr) = i ..

+ [VI. J (r')]V'd(r,r')} s' (46)

where most of notations have been defined in Equation (1) and

E inc(r) = incident electric field,

s I+ a a ,

1 at

t , t 2 are two orthonormal unit vectors on the surface S.

We denote the right-hand side of Equation (46) with an operator form

X(J (r')) and rewrite Equation (46) as

inc
W ( r')) n x E n (r) (47)
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We then expand the surface current J (r') according to Equations
-- s

(3) through (7) and employ the method of moments [35 by performing the

scalar product according to Equations (9) and (10). The resulting

system of linear equations is

2 N i = Linc i (48)

L L n n m --J=1 n=1

i=1,2; renl,..N

where for m#n

A i j 
= A + A (49)

mn imn 2mn

1A i x AS 4 (rm,rn) _-2 _

in 4njwc -mm in - -n -n

+ [-jk- r 1 mn (50)
mn -nnj n

2J 1 U -n x AS n (r ,r )(jkAinn 4irj~c-m"n i n (-m'-n)

r
__II ) mn

r r U j  (51)
mn -nnj -n

for m=n

2 iA (1-ei n) L (1-6 )(2i-3) (52)

r
n -44
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In the foregoing derivation, the surface gradient operator ' s

approximated by

all J r 2  1 -1i 12_-1_
2

V' -n + n n nl n n2 (53)
s n -t 2 r n U l +

n at -nnl -n • U_n -nn2

where nl and n2 are the indices for two patches adjacent to n and are
1 2

chosen for the evaluation of the gradient of I and I n Note thac then n

accuracy of Equation (53) depends on the local curvature of the surface

S. For a flat plane, Equation (13) is most accurate because the
I i

polarizations of the first basis vectors U and U n I are identical; so

are the polarizations for the second basis vectors U and U 12. These

relations also hold for patch n2. rnml and rnm2 in Equation (53) are

the vectorial distances between the centers of patch n and patches nl

and n2, respectively, as shown in Figure 17.

When one side of the nth triangular patch is an edge, the basis
1

vectors on this patch are organized to orient U to be perpendicular
I -n

to the edge. I , being perpendicular to the edge, is therefore zero in--n

magnitude. rnnl is reduced to the case in which the area of patch nl is

zero. In other words, rnnl runs from the bisecting piont on the edge

side to the center of the triangle.

A generalized computer program based on the foregoing analysis has

been coded. There are many similarities between the new thin-shell

program and SCT5I program using the magnetic field integral equation.

Numerical testing of the thin-shell computer program will be conducted

and the results will be included in the final report.
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SECTION V

CONCLUS IONS

Numerical testing for prolate spheroids, and finite circular and

rectangular cylinders has demonstrated that the surface patch algorithms

are efficient and accurate. These algorithms are also capable of

handling sharp edges in rectangular box and finite cylinders. As

compared with the wire-grid algorithms, the surface patch algorithm is

more efficient with respect to computation speed and exhibits improved

numerical accuracy, but has the disadvantage of unsymmetrical matrices.

Improvements and limitations of this algorithm have also been discussed.

Research efforts on the development of a thin-shell surface-patch

algorithm is also presented. This thin-shell algorithm is being tested

numerically for its accuracy and convergence.

47



SECTION VI

REFERENCES

1. F.K. Oshiro, "Source Distribution Technique for the Solution of General
Electromagnetic Scattering Problems," Proc. First GISAT Symposium,
Vol. 1, Part 1, Mitre Corporation, Bedford, MA., 1965.

2. F.K. Oshiro, K.M. Mitzner, and S.S. Locus, "Calculation of Radar Cross
Sections," Technical Report AFAL-TR-70-21, Air Force Avionics
Laboratory, Wright-Patterson AFB, Ohio, 1970.

3. N.C Albertsen, J.E. Hansen, and N.E. Jensen, "Computation of Radiation
from Wire Antennas on Conducting Bodies," IEEE Trans. Ant. Prop.,
Vol. AP-22, No. 2, pp. 200-206, March 1974.

4. J.J.H. Wang, "Numerical Analysis of Three-Dimensional Arbitrarily-Shaped
Conducting Scatterers by Trilateral Surface Cell Modeling," Radio Science,
Vol. 13, No. 6, pp 947-952, November-December 1978.

5. D.K. Faddeer and V.N. Faddeeva, Computational Methods of Linear Algebra,
W.H. Freeman and Co., San Francisco and London, pp 85-94, 1963.

6. J.H. Richmond, "Radiation and Scattering by Thin-Wire Structures in the
Complex Frequency Domain," Report TR2902-l0, ElectroScience Laboratory,
Ohio State University, Columbus, Ohio, May 1974.

7. F.J. Deadrick and E.K. Miller, "A User's Manual for the Wire Antenna
Modeling Program," Report UCID-30084, Lawrence Livermore Laboratory,
University of California, Livermore, California, December 1973.

8. M.I. Sancer, S. Siegel, and A.D. Varvatsis, "Foundation of the Magnetic
Field Integral Equation Code for the Calculation of Electromagnetic
Pulse External Interaction with Aircraft," Report AFWL-TR-76-279, Air
Force Weapons Laboratory, Kirkland AFB, New Mexico, April 1977.

9. L.L. Tsai, D.G. Dudley, and D.R. Wilton, "Electromagnetic Scattering
by a Three-Dimensional Conducting Rectangular Box," Journal of Applied
Physics, Vol. 45, No. 10, pp. 4393-4400, October 1974.

10. W.V.T. Rusch, J. Appel-Hansen, C.A. Klein, and R. Mittra, "Forward
Scattering From Square Cylinders in the Resonance Region with
Application to Aperture Blockage," IEEE Trans. Ant. Prop., Vol. AP-24,
No. 2, pp 182-189, March 1976.

11. J.J.H. Wang, "Computer Modeling of Small Antennas on Aircraft,"
Proc. ECOM-ARO Workshop on Electrically Small Antennas, Fort Monmouth,
New Jersey, pp. 147-151.

12. A.J. Poggio and E.K. Miller, "Integral Equation Solutions of Three-
Dimensional Scattering Problems," Computer Techniques for Electromagnetics,
edited by R. Mittra, Chapter 4, Pergamon, New York, 1973.

13. G.C. Copley, "Fundamental Results Concerning Integral Representations
in Acoustic Radiation," J. Acoustic Soc. Amer., Vol. 44, No. 1, pp 28-32,

January 1968.
14. H.A. Schenck, "Improved Integral Formulation for Acoustic Radiation

Problems," J. Acoustic Soc. Amer., Vol. 44, No. 1, January 1968.

48

-1 i ...



15. J. Boloney and W. Tabbara, "Numerical Aspects on Coupling between

Complementary Boundary Value Problems," IEEE Trans. Ant. Prop.,
Vol. AP-21, No. 3, pp 356-363, May 1973.

16. J.R. Mantz and R.F. Harrington, "A Combined-Source Solution for
Radiation and Scattering from a Perfectly Conducting Body,"
IEEE Trans. Ant. Prop., Vol. AP-27, No. 4, pp. 445-454, July 1979.

17. J.R. Mautz and R.F. Harrington, "H-Field, F-Field, and Combined Field
Solutions for Conducting Bodies of Revolution," A.E.U. (Germany),
Vol. 32, No. 4, pp. 157-164, April 1978.

18. C.M. Bulter and D.R. Wilton, "Analysis of Vdrious Numerical Techniques
Applied to Thin-Wire Scatterers," IEEE Trans. Ant. Prop., Vol. AP-23,
No. 4, pp 534-540, July 1975.

19. J.J.H. Wang, "Software for Other Than Business-Oriented Computer Programs
(Interim Software)," Contract No. F19628-78-C-0224, Deputy for Electronics
Technology (RADC/EEA), Electronics Systems Command, Air Force Systems
Command, Hanscom AFB, MA., June 1979.

20. D.L. Moffatt, "The Echo Area of a Perfectly Conducting Prolate Spheroid,"
IEEE Trans. Ant. Prop., Vol. AP-17, No. 3, pp 299-307, May 1969.

21. D.L. Moffatt and E.M. Kennaugh, "The Axial Echo Area of a Perfectly
Conducting Prolate Spheroid," IEEE Trans. Ant. Prop., Vol. AP-13,
pp 401-409, May 1965.

22. F.K. Oshiro, K.M. Mitzner, and R.C. Cross, "Scattering from Finite
Cylinders by Source Distribution Technique," Proc of the GISAT II
Symposium, Mitre Corp., Vol. II, Part I, 1967.

23. L.L. Tsai, D.G. Dudley, and D.R. Wilton, "Electromagnetic Scattering
by a Three-Dimensional Conducting Rectangular Box," J. Applied Physics,
Vol. 45, No. 10, pp 4393-4400, October 1974.

24. L.L. Tsai, "Radar Cross Section of a Simple Target: A Three-Dimensional
Conducting Box," IEEE Trans. Ant. Prop., Vol. AP-25, No. 6, pp 882-884,
November 1977.

25. R. Mittra, Y. Rahmat-Samii, D.V. Jamnejad, and W.A. Davis, "A New Look
at the Thin-Plate Scattering Problems," Radio Science, Vol. 8, No. 10,
pp 869-875, October 1973.

26. N.N. Wang, J.H. Richmond, and M.C. Gilbreath, "Sinusoidal Reaction
Formulation for Radiation and Scattering from Conducting Surfaces,"
IEEE Trans. Ant. Prop., Vol. AP-23, No. 3, pp. 376-382, May 1975.

27. A. Mendelovicz, "A New Surface-Current Model for Metallic Scattering
Surfaces," 1979 International Symposium Digest on Antennas ani
Propagation, Seattle, Washington, June 1979.

28. Y. Rahmat-Samii and R. Mittra, "Integral Equation Solution and RCS
Computation of a Thin Rectangular Plate," IEEE Trans. Ant. Prop.,
Vol. AP-22, No. 4, pp 608-610, July 1974.

29. A. Sankar and T.C. Tong, "Current Computation on Complex Structures
by Finite Element Method," Electronics Letters, Vol. 11, No. 22,
pp 481-482, October 1975.

49

L . ..-.. . . I . . ..



30. A.H. Stroud, Approximate Calculation of Multiple Integrals,
Prentice Hall, Englewood Cliffs, New Jersey, 1966.

31. S.A. Schelkunoff and H.T. Friis, Antennas: Theory and Practice,
John Wiley and Sons, New York, New York, 1952.

32. H.C. Pocklington, "Electrical Oscillations in Wire," Cambridge
Phil. Soc. Proc., Vol. 9, pp 324-332, 1897.

33. R.H. Kyle, "Mutual Coupling between Log-Periodic Dipole Antennas,"
Ph.D. Dissertation, Syracuse University, Syracuse, New York, p. 23,
1968.

34. J.H. Richmond, "Digital Solutions of the Rigorous Equations for
Scattering Problems," Proc. IEEE, Vol. 53, pp 796-804, 1965.

35. R.F. Harrington, "Field Computation by Moment Method," The MacMillan
Company, New York, 1968.

36. G.A. Thiele, "Wire Antennas," Computer Techniques for Electromagnetics,
R. Mittra - editor, Pergamon Press, New York, New York, 1973.

50



MISSION
Of

Rowe Air Devehopment Center
RW~ Ptam6 and executu u)tdie devetopient, tu~t and'
Aetected acquwLtion potWguaa in 6uppo*..t 06 Cmnzd, Conttot
Comnaiatiom and ILte2Lgemee (01z) acitiv". Techdt.
and elgiteLing AuPPOU~ wU*n aA6 oi techJn&at eoupetene
i,6 potvded to EsP Ptoglum ojpic (poa1) and othzeA ESP
dtementh. The p' iw ne.. ptechmcat rL66ion axea6 eAe
C-01(nIftatiofl4, eteztomagnWti guidance eand eontLot, Awt-
vetance oj gtocmd and &t&'w~pace object6, ictteULigme datA
cotct.on and hand"n, indoAmation 6y6tem teduiotogy,
iORoAPhelti Ptopagation, 6otid Ata* Aciene", icumosve
pky.6ic4 and ete~t'wn Aetiti4, maixt.nabU.tg and
coupataitity.

Psiute by
Uni,.d Sstus Air Pom
H" -con APFs' Mm... @1731


